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Problem 1. LQ games for affine dynamics

Consider the N-person affine quadratic game, described by the state equation
Xio1 = AXp + ZB"UL +C
ieN
(where N is the set of players) with cost function for each player i
K

i i i i i T A iT i
J = ch(xk+1 ’ uk)! Ck(Xk+1 ) uk) = Xk+1o Xk+1 + Uy R Ug.
k=1

with x¢,c € R", ul € Rdf,_A eR™", B € R™ 4 Qi ¢ R™" and R' ¢ R%*%_ Assume that the matrices have
been chosen such that Q' = 0 and R' »~ 0.

a) Consider the last stage K, and write the first-order necessary conditions for the optimal feedback strategies
that minimise the remaining cost-t0-go ¢ (Xk.1, U ).

b) Prove that the Nash equilibrium strategies at time K must be affine in xx, i.e. they must have the form
Y& = —Plxx — ol , i €N
and explain in detail how you can compute the parameters P. and .
c) Show that the value function at time K is a function of the state x of the form
Vi = x¢ Siexic + (rie) "xk + gl , i € N.
d) Using an induction argument, provide recursive expression for the computation of the sub-game perfect
Nash equilibrium strategy for the entire game (stages 1, ..., K).

e) Consider a scalar LQ game with two agents, where n = 1 and d; = 1 Vi € {1,2}. Is the Nash equilibrium
unique?

f) Provide an algorithm to compute a Nash equilibrium strategy for this game which is NOT a sub-game perfect
Nash equilibrium.

Solution:

a) Atthe last stage K the remaining cost to go for player i is

Cle(Xkat, Ule) = Xy Q' XK1 + u}'(TF?"uﬁ( (0.1)
T
= (AXK+ZB"U’,.(+C) Q (AXK+ZBIIUI,'(+C> +uﬁ(TRiuﬁ<
jEN jeN

which is a quadratic function of ui.. The first order necessary condition for optimality of the feedback is
therefore obtained by taking the first derivative with respect to uj., obtaining

((B)Y"QB +R)uj+(B)'Q (AXK +> B+ c) =0. (0.2)
7

b) The optimal control uj, =~ is obtained by solving (0.2) simultaneously by all agents. As in (0.2) all the uj
and xy appear linearly, the solution ;¢ must be an affine function of xk.
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In fact, one can compute ~j¢ by solving the following system of linear equations, which is just a reformulation
of (0.2) in which terms have been simply reordered.

BHYTQ'B'+R" .. BHYTQ'B BHYTQ'BN
(BHTQ'B! .. (BYTQB +R .. BHY aBN e+ | (BYTQA| xk+ [(B)TQc| =0
(BM)TQVB! (BN)TQNB . (BYYTQVBN + RN X M
A
(0.3)
Therefore the optimal solution for player i has the form
'y;'(* = —P;'(XK — a;( (0.4)

where _ _
P.=A"'"A ol =A"Tp

¢) The value function at time K can be obtained by simply plugging (0.4) into (0.1). One obtains

T
V}"( = (AXK + ZB/(—P],'(XK — a/K) + C) Q (AXK + ZBj(*PJ,'(XK - O/K) + C)

jeN jeN
+ (=Plixk — ale) Ri(—Ploxk — o)
which is clearly a quadratic form in xx.
Namely we have

Sk=(A—=>_BP)TQA->" BP,)+ (P} RPy
J i
()" =(=> B +c) QA=Y BP)+(ak) RP
/ j

gl = (Z B, + C)TQI(Z Bl +c) + (af) T Rlal.
J J

d) Let’s consider stage K — 1. The remaining cost to go is given by

C£(—1(XK’ U;<—1) + Vi (xk)
=X Q'xx + (Ul ) TR UL 4 + x4 Shexc + (rle) Tx + gl
=xx (Q" + S)xk + (Uk_1) "R'Uj_y + (ric) "Xk + aqk
=(Axk_1 + Z Bfu’kq +0)"(Q + Sl)(Axk_1 + Z Bju’,'(f1 +C)
J J
(U ) TRl 4+ (i) T(Axk—1 + Y Bluje_, +0) +qi
J

which is a quadratic form in u;'<_1 . Proceeding as before, we find the optimal uj{_1 as the zero of the gradient:

(B) (@ + Si)B + Ri)ulc_y + (B)(Q +Si)(Axk—1 + Y Bl +¢)+(B) r =0
J#
As before, in order to solve the optimality condition for all the inputs at time K — 1, we can solve a system of
linear equations that will return an affine form in xx_1. The expressions for A and I are the same, with the

only difference that @’ is replaced by Q' + S'. The term 5 is a bit different, as its terms have now the form
(BY(Q' +S)c+ (B)r.
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To conclude the inductive reasoning, we need to prove that the value function at step K — 1 is again a
quadratic function of the state.

We can do that by simply plugging the optimal control
W1 = —Pk_1Xk_1 — ak_
into the cost cj,_,(Xk, Ul_4) + Vi (xx) and obtain

j T i iAT i
Vik_1 = Xk _1Sk_1Xk—1 + (Fk—1)  Xk—1 + Qx_4
with

Sko1=(A=>_BP_ ) (Sk+Q)A-> BP_)+(Pk_4) RP_,
) )

(k)" = (=Y Bdj+c) (S +Q)A-> BP,_ )+
i j
(k)" (A = _BP_y) + (ak 1) 'RPY_;
j
gk_4 = ...not needed for the iterative algorithm

The Nash equilibrium is unique if and only if the linear system 0.3 has a unique solution. System 0.3 is an
equation of the form Ax = b. There exists a solution if b € range(A) and the solution is unique if and only
if A has full column rank, and since in this case A is square, this is equivalent to invertibility of A, which is
equivalent to eigenvalues being non-zero.

Thus, we can see if the system has a unique solution by checking if the matrix A is invertible. For the two
agents scalar LQ game, the matrix A at the last time step is:

Ao ri+qib?  qibibs
Qobibs 2 +qob3|”

A matrix is invertible if and only if its determinant is different from zero. We can thus check the determinant
of A:

det(A) =(r1 + q1b3)(r2 + q2b3) — q1g2b2b3

=rqro +f1q_2b§ +r2q1b$ > 0.

Thus the matrix is always invertible. For the previous time steps, the expression for matrix A is the same,
thus the same proof holds.

There are different ways to compute a NE strategy which is not subgame perfect. For example, one could
use the subgame perfect NE strategies " that we computed (that are functions of the state x,!) and
evaluate them along the optimal trajectory x;. The resulting control actions & = +*(x;) are not a function
of x, any more, and if applied in open loop to the system they are a non-subgame-perfect NE. Another
possible way is to construct a quadratic optimization problem with the total cost and the system dynamics
as constraints. The solution of this optimizaton problem are a NE, but when applied in open loop they are
not subgame perfect.

Problem 2. A three-truck platoon

Consider the three-truck platoon example described at slide 12 of the Dynamic games lecture (Lecture 8) as an
LQ game. The leading truck is moving at a constant speed, s("). The second truck aims to maintain a distance,
D, both from the first truck ahead and the third truck behind. Similarly, the last truck aims to keep the same
distance D from the second truck. Consider x) and st as respectively the positions and speeds of trucks, for
i =1,2,3. The derivative of the position is equal to the speed

X0 = g0
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and the derivative of the speed is equal to the acceleration
&0 = 4.
Using Euler discretization, the dynamics can then be written as
(i _ (0 (7)
X1 = Xi + BTS)
)

()R ()] (i
Sia1 =S’ + AU

where A7 is the discretization time.

Let the relative position of trucks i, j be denoted by d,(("/') = x,((i) — x,((’).

a) Write the discrete-time equation for the relative positions.
b) Identify the state matrix A, the control matrices B;, and the cost matrices Q; and R;.

¢) Write the equations corresponding to the subgame perfect Nash equilibrium.

Hint: the quadratic term in the cost function will not be d™ Qd but (d — d) " Q(d — d) . For this reason, the value
function of the an agent is given by three terms: Vi x(d) = d T Paxd+(rax) "d+Cay. Thus, for the second question
of the problem, you can repeat the steps at slide 26 of Lecture 8 with the value function proposed. When an
equation becomes too long, substitute some terms with new variables to simplify the writing.

Solution:

a) The state dynamic can thus be written as:

a1 10 -7 o7][d"?] g1 0 0
. |d® o1 T T d§23>+os(1)+ou+ov
ket = s@ 1710 0 f 0 s 0 T|7*7 (o] ",
3 3
O 00 0 1 s 0 0 T
The cost function for the second truck is:
! 12 2 23 2 2
Ja(x, U, v)=Z(d,(( ) D) <d,£ ) D) + (Ug)
k=0
. 1 "M oo o 1
1 0100 1 2
=ZXK—0D 00 0 ol % |o|D|+w
k=0 0 0000 0
The cost function for the third ruck is:
U (23) 2 2
Js(x,u,v) = Z (dk - D) + (k)
k=0
. 0 "o o 0 o0 0
1 0100 1 5
=Zxk—0D 00 0 ol % |00+
k=0 0 0000 0
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So the matrices are:

1 0 -T O 0 0
o1 T -T 0 0
A= 00 1 0 1B1= T vB2= 0
00 0 1 0 T
1 0 0 O]
01 00
Q=1p 0 0 of F="
0 0 0 0
[0 0 0 O]
01 0O
Qs=1pg 0 0 of ="
0 0 0 0
b) For the first agent
. 12 2 23 2 2
Jg(X,U,V):Z(df( )—D) +(d,(( )—D) + () (0.5)

Using the value function we have:
2 2
Va2 k (Xk, Vk) = min {(dlga - D) + (d;((%) - D) + (uk)? + V2,k+1(Xk+1)}
Uk
(402 2 (23) 2 2 T T
= (dk - D) + (dk - D) +min [(UK)® + X1 (Sopat)Xiat + (Fopat) ' Xrt + Qg |
12 2 23 2 . 2
=(d"® - D) + (4~ D) + min[(ue)® +
(Axi + Cs") + Bouy + Bavi) T (Sake1)Xks1(Axk + Cst) + Bouy + Bavi)+
(roset) T (Axi + Csy + Bouy + BaVie) + Qo]
2 2
= (d,((12) _ D) + (d/((ZS) — D) + n?lln |:U;—(1 + B;(Sgyk” )B2)u+
k
2ukBy [(Sz k1) (Axy + Cs\) + Bavi) + (rae1)] +
(Axi + Cs") + Bavi) T (Sake1)(Axy + Cs\ + Bavy)+
(roke1) T (Ax + Cs\) + Bavy) + QZ,k+1:|

To find the minimizer, since 1+ B, (Szx+1)B2 = 0, we can find the best response by setting the gradient with
respect to uy to zero:

(1 + BJ (Soke1)Ba)ui + Bg [(Saket)(Axi + Cs!) + Bavi) + (ras.1)] = O,
which gives us:

By [(Soss1)(Axi + Cs + Bavie) + (Fasn))]
(1+BJ (S2k+1)Bz)

Similarly, we can find that the optimal v}, given a certain uy, is:

Ug(vk) = — =~ xxXe — T1viVk — Tk

By [Saks1(Axk + Cs) + Boui) + (rape) ]
(1 + B; S3.1Bs)

Vi (Uk) = — = —loxxXk — Mo uklk — Tok.

The Nash equilibrium is given by the following system:
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Substituting the equations we found, we obtain:

UNE = Ty X — T1yaVE — Tk
VIVE = —To Xk — ToukUlNE — Tok
By substituting vt in uf€, we obtain:
NE NE
U™ = —TisXi — Tiwi (= ToxkXe — Touxt — Tok) — Tk

NE
= (—Txk + Tkl ) Xk + Tk Copaty s + (=g + T1vilak)

and thus, with some simple computation:

GNE = Tkt Tvklann =T+ Tkl 2k
NE -
1 —Tivkloxk 1 =Ty viloxk
= K1k Xk + V1 k-

For v} we will obtain a similar result:
NE
Vo = KoXk + Yok-

Now that we have the values of U}t and v} as a function of x,, we can substitute them in the expression
for Vo k(xk, VIE) to compute Sy, r2x and gz (and the same for Vs k(xk, URE)).



