
ME-429 Problem set 7 2025-04-08

Problem 1. LQ games for affine dynamics

Consider the N-person affine quadratic game, described by the state equation

xk+1 = Axk +
∑
i∈N

Biui
k + c

(where N is the set of players) with cost function for each player i

J i =
K∑

k=1
ci

k(xk+1, ui
k), ci

k(xk+1, ui
k) = x⊤

k+1Qixk+1 + ui
k
⊤Riui

k .

with xk , c ∈ Rn, ui
k ∈ Rdi , A ∈ Rn×n, Bi ∈ Rn×di , Qi ∈ Rn×n, and Ri ∈ Rdi×di . Assume that the matrices have

been chosen such that Qi ⪰ 0 and Ri ≻ 0.

a) Consider the last stage K , and write the first-order necessary conditions for the optimal feedback strategies
that minimise the remaining cost-to-go ci

K (xK+1, ui
K ).

b) Prove that the Nash equilibrium strategies at time K must be affine in xK , i.e. they must have the form

γ i∗
K = −Pi

K xK − αi
K , i ∈ N

and explain in detail how you can compute the parameters Pi
K and αi

K .

c) Show that the value function at time K is a function of the state x of the form

V i
K = x⊤

K Si
K xK + (r i

K )⊤xK + qi
K , i ∈ N.

d) Using an induction argument, provide recursive expression for the computation of the sub-game perfect
Nash equilibrium strategy for the entire game (stages 1, ... , K ).

e) Consider a scalar LQ game with two agents, where n = 1 and di = 1 ∀i ∈ {1, 2}. Is the Nash equilibrium
unique?

f) Provide an algorithm to compute a Nash equilibrium strategy for this game which is NOT a sub-game perfect
Nash equilibrium.

Solution:

a) At the last stage K the remaining cost to go for player i is

ci
K (xK+1, ui

K ) = x⊤
K+1QixK+1 + ui

K
⊤Riui

K (0.1)

=

AxK +
∑
j∈N

Bjuj
K + c

⊤

Qi

AxK +
∑
j∈N

Bjuj
K + c

 + ui
K
⊤Riui

K

which is a quadratic function of ui
K . The first order necessary condition for optimality of the feedback is

therefore obtained by taking the first derivative with respect to ui
K , obtaining

(
(Bi)⊤QiBi + Ri)ui

K + (Bi)⊤Qi

AxK +
∑
j ̸=i

Bjuj
K + c

 = 0. (0.2)

b) The optimal control ui
K = γ i∗

K is obtained by solving (0.2) simultaneously by all agents. As in (0.2) all the ui
K

and xK appear linearly, the solution γ i∗
K must be an affine function of xK .
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In fact, one can compute γ i∗
K by solving the following system of linear equations, which is just a reformulation

of (0.2) in which terms have been simply reordered.

(B1)⊤Q1B1 + R1 ... (B1)⊤Q1Bi ... (Bi)⊤Q1BN

... . . . ... . . . ...
(Bi)⊤QiB1 ... (Bi)⊤QiBi + Ri ... (Bi)⊤QiBN

... . . . ... . . . ...
(BN)⊤QNB1 ... (BN)⊤QNBi ... (BN)⊤QNBN + RN


︸ ︷︷ ︸

∆

γ∗
K +


...

(Bi)⊤QiA
...


︸ ︷︷ ︸

Λ

xK +


...

(Bi)⊤Qic
...


︸ ︷︷ ︸

η

= 0

(0.3)

Therefore the optimal solution for player i has the form

γ i∗
K = −Pi

K xK − αi
K (0.4)

where
Pi

K = ∆−1Λ αi
K = ∆−1η.

c) The value function at time K can be obtained by simply plugging (0.4) into (0.1). One obtains

V i
K =

AxK +
∑
j∈N

Bj(−Pj
K xK − αj

K ) + c

⊤

Qi

AxK +
∑
j∈N

Bj(−Pj
K xK − αj

K ) + c


+ (−Pi

K xK − αi
K )⊤Ri(−Pi

K xK − αi
K )

which is clearly a quadratic form in xK .
Namely we have

SK = (A −
∑

j
BjPj

K )⊤Qi(A −
∑

j
BjPj

K ) + (Pi
K )⊤RiPi

K

(r i
K )⊤ = (−

∑
j

Bjαj
K + c)⊤Qi(A −

∑
j

BjPj
K ) + (αi

K )⊤RiPi
K

qi
K = (

∑
j

Bjαj
K + c)⊤Qi(

∑
j

Bjαj
K + c) + (αi

K )⊤Riαi
K .

d) Let’s consider stage K − 1. The remaining cost to go is given by

ci
K−1(xK , ui

K−1) + VK (xK )
=x⊤

K QixK + (ui
K−1)⊤Riui

K−1 + x⊤
K Si

K xK + (r i
K )⊤xK + qi

K

=x⊤
K (Qi + Si

K )xK + (ui
K−1)⊤Riui

K−1 + (r i
K )⊤xK + qi

K

=(AxK−1 +
∑

j
Bjuj

K−1 + c)⊤(Qi + Si
K )(AxK−1 +

∑
j

Bjuj
K−1 + c)

+ (ui
K−1)⊤Riui

K−1 + (r i
K )⊤(AxK−1 +

∑
j

Bjuj
K−1 + c) + qi

K

which is a quadratic form in ui
K−1. Proceeding as before, we find the optimal ui

K−1 as the zero of the gradient:

((Bi)⊤(Qi + Si
K )Bi + Ri)ui

K−1 + (Bi)⊤(Qi + Si
K )(AxK−1 +

∑
j ̸=i

Bjuj
K−1 + c) + (Bi)⊤r i

K = 0

As before, in order to solve the optimality condition for all the inputs at time K −1, we can solve a system of
linear equations that will return an affine form in xK−1. The expressions for ∆ and Γ are the same, with the
only difference that Qi is replaced by Qi + Si . The term η is a bit different, as its terms have now the form
(Bi)⊤(Qi + Si

K )c + (Bi)⊤r i
K .
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To conclude the inductive reasoning, we need to prove that the value function at step K − 1 is again a
quadratic function of the state.
We can do that by simply plugging the optimal control

γ i∗
K−1 = −Pi

K−1xK−1 − αi
K−1

into the cost ci
K−1(xK , ui

K−1) + VK (xK ) and obtain

V i
K−1 = x⊤

K−1Si
K−1xK−1 + (r i

K−1)⊤xK−1 + qi
K−1

with

SK−1 = (A −
∑

j
BjPj

K−1)⊤(Si
K + Qi)(A −

∑
j

BjPj
K−1) + (Pi

K−1)⊤RiPi
K−1

(r i
K−1)⊤ = (−

∑
j

Bjαj
K + c)⊤(Si

K + Qi)(A −
∑

j
BjPj

K−1)+

(r i
K )⊤(A −

∑
j

BjPj
K−1) + (αi

K−1)⊤RiPi
K−1

qi
K−1 = ...not needed for the iterative algorithm

e) The Nash equilibrium is unique if and only if the linear system 0.3 has a unique solution. System 0.3 is an
equation of the form Ax = b. There exists a solution if b ∈ range(A) and the solution is unique if and only
if A has full column rank, and since in this case A is square, this is equivalent to invertibility of A, which is
equivalent to eigenvalues being non-zero.
Thus, we can see if the system has a unique solution by checking if the matrix ∆ is invertible. For the two
agents scalar LQ game, the matrix ∆ at the last time step is:

∆ =
[
r1 + q1b2

1 q1b1b2
q2b1b2 r2 + q2b2

2

]
.

A matrix is invertible if and only if its determinant is different from zero. We can thus check the determinant
of ∆:

det(∆) =(r1 + q1b2
1)(r2 + q2b2

2) − q1q2b2
1b2

2

=r1r2 + r1q2b2
2 + r2q1b2

1 > 0.

Thus the matrix is always invertible. For the previous time steps, the expression for matrix ∆ is the same,
thus the same proof holds.

f) There are different ways to compute a NE strategy which is not subgame perfect. For example, one could
use the subgame perfect NE strategies γ i∗

k that we computed (that are functions of the state xk !) and
evaluate them along the optimal trajectory x∗

k . The resulting control actions ûi
k = γ i∗

k (x∗
k ) are not a function

of xk any more, and if applied in open loop to the system they are a non-subgame-perfect NE. Another
possible way is to construct a quadratic optimization problem with the total cost and the system dynamics
as constraints. The solution of this optimizaton problem are a NE, but when applied in open loop they are
not subgame perfect.

Problem 2. A three-truck platoon

Consider the three-truck platoon example described at slide 12 of the Dynamic games lecture (Lecture 8) as an
LQ game. The leading truck is moving at a constant speed, s(1). The second truck aims to maintain a distance,
D, both from the first truck ahead and the third truck behind. Similarly, the last truck aims to keep the same
distance D from the second truck. Consider x(i) and s(i) as respectively the positions and speeds of trucks, for
i = 1, 2, 3. The derivative of the position is equal to the speed

ẋ(i) = s(i),
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and the derivative of the speed is equal to the acceleration

ṡ(i) = u(i).

Using Euler discretization, the dynamics can then be written as

x(i)
k+1 = x(i)

k + ∆T s(i)
k

s(i)
k+1 = s(i)

k + ∆T u(i)
k

where ∆T is the discretization time.
Let the relative position of trucks i, j be denoted by d (ij)

k = x(i)
k − x(j)

k .

a) Write the discrete-time equation for the relative positions.

b) Identify the state matrix A, the control matrices Bi , and the cost matrices Qi and Ri .

c) Write the equations corresponding to the subgame perfect Nash equilibrium.

Hint: the quadratic term in the cost function will not be d⊤Qd but (d − d̄)⊤Q(d − d̄) . For this reason, the value
function of the an agent is given by three terms: V2,k(d) = d⊤P2,kd+(r2,k)⊤d+C2,k . Thus, for the second question
of the problem, you can repeat the steps at slide 26 of Lecture 8 with the value function proposed. When an
equation becomes too long, substitute some terms with new variables to simplify the writing.
Solution:

a) The state dynamic can thus be written as:

xk+1 =


d (12)

k+1
d (23)

k+1
s(2)

k+1
s(3)

k+1

 =


1 0 −T 0
0 1 T −T
0 0 1 0
0 0 0 1




d (12)
k

d (23)
k

s(2)
k

s(3)
k

 +


T
0
0
0

 s(1) +


0
0
T
0

uk +


0
0
0
T

 vk .

The cost function for the second truck is:

J2(x, u, v) =
T∑

k=0

(
d (12)

k − D
)2

+
(

d (23)
k − D

)2
+ (uk)2

=
T∑

k=0

xk −


1
1
0
0

D


⊤ 

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


xk −


1
1
0
0

D

 + (uk)2 .

The cost function for the third ruck is:

J3(x, u, v) =
T∑

k=0

(
d (23)

k − D
)2

+ (vk)2

=
T∑

k=0

xk −


0
1
0
0

D


⊤ 

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


xk −


0
1
0
0

D

 + (uk)2 .
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So the matrices are:

A =


1 0 −T 0
0 1 T −T
0 0 1 0
0 0 0 1

 , B1 =


0
0
T
0

 , B2 =


0
0
0
T



Q2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , R2 = 1,

Q3 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , R3 = 1.

b) For the first agent

J2(x, u, v) =
T∑

k=0

(
d (12)

k − D
)2

+
(

d (23)
k − D

)2
+ (uk)2 (0.5)

Using the value function we have:

V2,k(xk , vk) = min
uk

[(
d (12)

k − D
)2

+
(

d (23)
k − D

)2
+ (uk)2 + V2,k+1(xk+1)

]
=
(

d (12)
k − D

)2
+
(

d (23)
k − D

)2
+ min

uk

[
(uk)2 + x⊤

k+1(S2,k+1)xk+1 + (r2,k+1)⊤xk+1 + q2,k+1
]

=
(

d (12)
k − D

)2
+
(

d (23)
k − D

)2
+ min

uk

[
(uk)2 +

(Axk + Cs(1)
k + B2uk + B3vk)⊤(S2,k+1)xk+1(Axk + Cs(1)

k + B2uk + B3vk)+
(r2,k+1)⊤(Axk + Cs(1)

k + B2uk + B3vk) + q2,k+1
]

=
(

d (12)
k − D

)2
+
(

d (23)
k − D

)2
+ min

uk

[
u⊤

k (1 + B⊤
2 (S2,k+1)B2)uk+

2ukB⊤
2
[
(S2,k+1)(Axk + Cs(1)

k + B3vk) + (r2,k+1)
]
+

(Axk + Cs(1)
k + B3vk)⊤(S2,k+1)(Axk + Cs(1)

k + B3vk)+

(r2,k+1)⊤(Axk + Cs(1)
k + B3vk) + q2,k+1

]
To find the minimizer, since 1 + B⊤

2 (S2,k+1)B2 ≻ 0, we can find the best response by setting the gradient with
respect to uk to zero:

(1 + B⊤
2 (S2,k+1)B2)uk + B⊤

2
[
(S2,k+1)(Axk + Cs(1)

k + B3vk) + (r2,k+1)
]

= 0,

which gives us:

u∗
k (vk) = −

B⊤
2
[
(S2,k+1)(Axk + Cs(1)

k + B3vk) + (r2,k+1)
]

(1 + B⊤
2 (S2,k+1)B2)

= −Γ1,x,kxk − Γ1,v,kvk − Γ1,k .

Similarly, we can find that the optimal v∗
k , given a certain uk , is:

v∗
k (uk) = −

B⊤
3
[
S3,k+1(Axk + Cs(1)

k + B2uk) + (r3,k+1)⊤
]

(1 + B⊤
3 S3,k+1B3)

= −Γ2,x,kxk − Γ2,u,kuk − Γ2,k .

The Nash equilibrium is given by the following system:{
u∗

k
(
vNE

k
)

= uNE
k

v∗
k
(
uNE

k
)

= vNE
k
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Substituting the equations we found, we obtain:{
uNE

k = −Γ1,x,kxk − Γ1,v,kvNE
k − Γ1,k

vNE
k = −Γ2,x,kxk − Γ2,u,kuNE

k − Γ2,k

By substituting vNE
k in uNE

k , we obtain:

uNE
k = −Γ1,x,kxk − Γ1,v,k

(
−Γ2,x,kxk − Γ2,u,kuNE

k − Γ2,k
)
− Γ1,k

=
(
−Γ1,x,k + Γ1,v,kΓ2,x,k

)
xk + Γ1,v,kΓ2,x,kuNE

k +
(
−Γ1,k + Γ1,v,kΓ2,k

)
and thus, with some simple computation:

uNE
k = −Γ1,x,k + Γ1,v,kΓ2,x,k

1 − Γ1,v,kΓ2,x,k
xk + −Γ1,k + Γ1,v,kΓ2,k

1 − Γ1,v,kΓ2,x,k

= K1,kxk + γ1,k .

For vNE
k we will obtain a similar result:

vNE
k = K2,kxk + γ2,k .

Now that we have the values of uNE
k and vNE

k as a function of xk , we can substitute them in the expression
for V2,k(xk , vNE

k ) to compute S2,k , r2,k and q2,k (and the same for V3,k(xk , uNE
k )).
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